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In the last few decades two aspects of the problems of evaporation have been the center of attention 
of specialists in rarefied gas dynamics: 

(1) Study of the rarefied gas flow structure (Kn > 0.01), where the Knudsen number Kn characterizes 
the conditions of rarefaction either by the size of the limited evaporating surface or by the distance between 
the evaporating and condensing surfaces; 

(2) Determination of boundary conditions for the equations of a continuous medium with intense 
evaporation, i.e., determination of discontinuities of the Knudsen layer parameters. 

Even in the simplest case of homogeneous gas flow, these problems have a complicated physical and 
mathematical context, which gave rise to a number of various theoretical approaches to the choice of kinetic 
boundary conditions and also to the methods for solution of the Boltzmann equation. Without making a 
complete list, we shall mention some studies which differ from one another either by selection of boundary 
conditions or by methods for solving the Boltzmann equation. The Boltzmann equation was solved using the 
moment method [1-5], numerical methods including the Monte Carlo method for determining the collision 
integral [6], iterative algorithms of integration [7], analytical methods based on Hilbert's expansion of the 
distribution function [S], analytical methods for solving the Bhatnagar-Gross-Krook (BGK) equation [9- 
11], and numerical solutions of the BGK equation [12-19]. Use of the Boltzmann-Krook-Welander (BKW) 
equation [20] gives the same results as the BGK equation. The Mott-Smith method was employed in some 
works [21, 22]. 

Using a variational approach, Cipolla et al. [23] determined temperature and pressure discontinuities 
near the surfaces for the Iinearized Boltzmann equation. To obtain boundary conditions for the equations 
of continuous medium, Labuntsov and Kryukov [24] performed an analysis of the Knudsen layer near the 
evaporating surface by solution of the Boltzmann equation using the moment method assuming a bimodal 
distribution function. 

One of the most comprehensive studies of evaporation (condensation) processes was carried out by 
Sugimoto and Sone [25], where stationary evaporation was studied numerically using the solution of the 
BKW equation; a new difference scheme has been developed for the detailed investigation of the Knudsen 
layer, the behavior of gas parameters and the asymptotic limiting cases were studied in a wide range of 
Knudsen numbers (Kn ~> 0.01). This paper sums up the long-standing investigations of Sone and coworkers. 

The comparative analysis of all the results obtained, the evaluation of the methods, and also the 
description of the evolution parameters in the vicinity of the evaporating surface using results of particular 
works is a difficult problem, which is, in addition, not important. The study of the Knudsen layer using 
methods of kinetic gas theory may be considered completed. But the method of statistical modeling gives 
some new opportunities. Sibold and Urbassek [26], proceeding from the experiments of Faubel, Schlemmer, and 
Toennies [27] and using the Bird method, analyzed the behavior of parameters in the vicinity of a cylinder 
at Kn = co, 2, and 0.002 and drew some important conlusions concerning not only the description of the 
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evaporation process, but also the history of previous investigations. It seems likely that the method of direct 
statistical modeling was first applied to evaporation and condensation by Murakami and Oshima [28], who 
analyzed recondensation within a plane layer and obtained some results which were in agreement with the 
results of other authors. The problem of intense recondensation of gas between circular coaxial cylinders was 
solved using direct statistical modeling for a homogeneous gas [29] and for recondensation in the presence of 
a noncondensing gas [30]. 

Although the investigation of evaporation from bodies of limited size appears to be completed, little 
attention has been given in the literature to the question of transition through the sonic speed in the 
neighborhood of an evaporating surface during expansion into vacuum or into a low-density medium. The 
fundamental importance of this question lies in the fact that the transition proceeds within an expanding 
flow but the role of "maxwellization," viscosity, and thermoconductivity in the formation of a sonic surface 
under a unidirectional geometrical influence has not been completely elucidated. Concerning the sonic surface 
location, the conclusion can be drawn from the available works, except for [26], that a sonic surface is located 
either within the Knudsen layer or on its boundary. 

In this paper we assume that a surface with a local Knudsen number Knt -= ( I / p ) ( d p / d x )  -= 0.01 is the 
boundary of the Knudsen layer (here p is a thermodynamic parameter that is most sensitive to the boundary, 
of influence of rarefaction). Beyond this boundary the Navier-Stokes approximation can be used for cases of 
practical imporantance. From this standpoint, use of the thickness of the Knudsen layer as a scale quantity 
can most likely be justified by demands of the mathematical model, as in [5], where it was shown that, for 
plane flow, the Knudsen layer, which is defined formally, can stretch from the evaporating surface to infinity. 

In the present paper, the formation of a sonic surface is studied using a more general formulation of 
the problem than only evaporation, i.e., the case of gas injection from the surface of a cylindrical source into 
vacuum is analyzed. This formulation supplements the set of possible gas flow conditions with a free selection 
of the injected gas parameters. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  A particle flow is evaporated or injected from the surface of a 
cylindrical source of radius r0 and of infinite length into the surrounding medium, which either has a zero 
pressure at infinity or is enclosed in a concentric cover of diameter d with condensation coefficient a = 1 
(Fig. 1). 

The velocity distribution function for evaporated or injected molecules is specified in the ordinary way. 
In this formulation (with complete gas condensation either at infinity or at a finite distance) the evaporation 
coefficient is of no concern for the problem while the condensation coefficient at the evaporating surface can 
be varied. The conditions of complete condensation at the outlying boundary were specified to eliminate any 
influence of the residual gase upon the processes that take place near the evaporation (injection) surface. This 
question requires a special analysis. At a constant flow rate of vapor or injected gas, the conditions at infinity 
or at the condensing surface must not affect the formation of flow near the source. These considerations were 
taken into account in the selection of downstream boundary conditions. 

The aim of the present work is to find the radial distribution of the vapor (gas) parameters over the 
expansion zone and to determine the location of the sonic surface. 

2. A l g o r i t h m  of  D i r e c t  S ta t i s t i ca l  Mode l ing .  To describe the motion of particles, we introduce a 
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_six-dimensional space X x V, where the particle state is defined by its three spatial coordinates and also by its 
three velocity components.  We define the distribution function f(z,  v) in the following way: f(x, v)dzdv is the 
expected number of particles within volume element dz of the physical space near point x and the velocities 
of the particles fall within the range dv near point v in the velocity space. Considering the geometry of the 
problem (Fig. 1), it is convenient to use cylindrical coordinates in the following manner: the z-axis coincides 
with the cylinder axis; r is the distance to the cylinder axis, and ~o is the azimuthal angle. The  notation vr, v,, 
%, Tr, Tz, and T~, denote the gas velocity and temperature components. Under these conditions we assume 
that  the stationary gas flow is described by the Boltzmann equation [31] 

,- + of v2 Of(,T, ?.)) VrV~ Of(x, v) 
r Ow r 0% 

= - (2.:) 

Here udfl is the differential collision cross-section; g = Iv - vii is the relative velocity; v, vl, v', and .v~ are 
the velocities of two colliding molecules before and after collision. The boundary conditions are as follows: 
it is assumed that  particles that  leave the source surface are in thermal equlibrium with the source, i.e., the 
particle velocity is governed by the Maxwellian distribution 

f ( r = r 0 , v ) = ~  ~ exp 2kTw ' v r > 0 ,  (2.2) 

where m is the mass of the particle; Tw is the temperature of the source wall; r is the flux of evaporating 
particles; k is the Boltzmann constant. Since evaporation proceeds in vacuum, the second boundary condition 
takes the form 

f ( r  ~ oo, v) --- O. (2.3) 

The hard sphere model of [32] is applied to describe the interaction between molecules. Problem (2.1)-(2.3) is 
solved using dimensionless variables. To normalize velocity, temperature,  and mass, one can use, respectively, 
~ / m ,  and The  and free that  to the state of the at Tw, density path $0 correspond / ' f t .  gas mean gas 
temperature Tw and flux (~, are taken as the unit density and the unit length, respectively. The variable A0/~ 
[13 = Cm/(2kTw)] is used to nondimensionalize time. In this case, the nondimensional formulation of the 
problem has only one parameter,  namely, the Knudsen number 

Kn = )~0/2r0. (2.4) 

The method of direct statistical modeling [32, 33] was used to solve the problem formulated. This method 
uses cylindrical cells whose radial size was decreased as the source was approached. For molecules that  return 
to the surface, two cases are considered: 1) complete absorption; 2) diffuse reflection. 

A cylindrical surface that  absorbs all incoming particles is located at distance d/2 from the center of 
the source. This distance changes according to Kn. For every value of Kn, the distance d was chosen so as to 
prevent the influence of the absorbing surface on the flow behavior near the source. All the basic hydrodynamic 
moments of the distribution function were determined in the calculations. The calculations were carried out 
for a wide range of Kn values defined by (2.4): from 0.00005 to free-molecular flow. One of the objects of 
this work was to investigate the behavior of the Knudsen layer with changes of rarefaction conditions. In 
the foregoing, the boundary of the Knudsen layer was defined according to the conditions of applicability of 
continuous approaches. However, the method of direct statistical modeling does not allow this boundary to be 
found exactly because of the probabilistic character of this method,  which leads to statistical fluctuations of 
the calculated moments.  From this point of view, the Knudsen layer boundary can be determined with some 
accuracy 6, as in [34]. We specify 6 in the form 

- T I  - T I  - 6= max [lTr T , IT~ ,IT~ _TI] .  

Here T = (T~ + Tz + T~)/3. 
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Thus, ~ defines the deviation of the coordinate components of the temperature from the mean value. 
The dependence of 6 and of the dispersions of the studied moments on the distribution function can be found 
by a simple procedure. Below, therefore, we use a value of ~ that permits the clearest differentiation between 
statistical fluctuations and thermal nonequlibrium in the Knudsen layer. 

3. R e s u l t s  o f  Inves t iga t ion .  The range from free-molecular to continuous flow regimes was studied. 
A rigorous formulation of the problem of stationary free-molecular flow from a cylindrical source into vacuum 
makes no physical sense. The fact is that the cylindrical expansion of the flow into infinity has no stationary 
solution. At a given constant flux, the initial stage of scattering of real molecules even into absolute vacuum 
at any but finite Knudsen number is accompanied by molecular collisions, which are significant for energy 
redistribution. 

Calculated radial distributions of the parameters Tr, T~, T~, T, n, and M for Kn = 0.005, 0.05, 0.5, 
and 5 are shown in Fig. 2. The analytical results of [26] for free-molecular flow are also shown here. Note 
the characteristic nonmonotony of the curve for Tr at distances r / r0 < 1.06 as Kn -~ oo. This is due to the 
screening effect of the surface bending, as was indicated by Sone [35], who brought into use the concept of the 
5'-layer. The limiting parameters for free-molecular flow near the cylinder surface are of interest: Tw = 0.787, 
T~w = 1.000, Trw = 0.363, urw = 0.564, and also Trn~n = 0.334 and uoo = 0.886. The value M = u / ~  = 1 
has the coordinate (r/(d/2))M=l = 1.16. This abstract value, expressed as a Mach number, shows the limiting 
location of the sonic surface in the expanding flow. The asymptotic values of the parameters on the sonic 
surface for Kn -~ 0 are given in [36]. 

Let us examine the behavior of the distribution of the parameters near the cylinder as Kn increases. 
Note that the changes in the distribution of the parameters are most significant as Kn changes in the range 
from 0.5 to 0.005. For Tr (see Fig. 2a), this change is qualitative. At large Kn values, the function Tr(r) 
has a maximum, while at small values it has a minimum. The maximum remains even at smaller Kn values 
(Kn < 0.005) while its location comes closer to the cylinder. While the minimum, as one can see from Fig. 2a, is 
associated with a purely geometric effect, the maximum results from a relaxation process within the Knudsen 
layer. The collision "game" of molecules is responsible for the peculiarity in the behavior of T~ (see Fig. 2c), 
which involves a nonmonotonic change in the azimuthal component of temperature with a change in Kn in the 
flow region under study. The change in T~ = F(r )  with Kn is less pronounced than for Tr and Tz. The changes 
in the density and Mach number are shown in Figs. 2e and 2f. One can clearly see a correlation between these 
two parameters with a decrease in Kn: the density rises and the velocity falls off near the cylinder, while the 
density decreases as the velocity rises far away from the surface. 

The calculation allows one to determine the number of particles returning to the evaporation surface 
from the region around the cylinder. These particles can either be condensed at the surface or reflected. The 
structure of the Knudsen layer depends on the flow intensity of returning particles and vice versa. Almost 
identical functions j = ir/i~ = F(Kn) are shown in Fig. 3 for two cases: condensation with cr = 1 and diffuse 
reflection. Here i~ is the total flux of returning particles and ie is the total flux of evaporated (injected) 
and reflected particles. One can see that as Kn --* 5 . 1 0  -5 the portion of returning particles approaches 
asymptotically a constant value. Assuming that the evaporation coefficient is equal to 1, the conclusion can 
be drawn that  Fig: 3 describes quantitatively the mass flux decrease with decreasing Kn in comparison with 
the mass flux according to the Hertz-Knudsen law. For reference, the data of [19, 26] are also given in Fig. 3. 
Note that the rate of change in the portion of particles returning to the surface has a maximum at Kn ~ 0.05. 

The radial coordinate of the sonic surface (in free paths) counted from the cylinder surface is shown 
in Fig. 4. Note that,  for c~ = 1, the sonic surface at Kn = 0.005 is located at a distance of ~ 3.5 mean free 
paths, i.e., in the usual boundary region of the Knudsen layer. At Kn = 0.00005, it is located at approximately 
30 mean free paths. For Kn = 0.002, the thickness of the Knudsen layer was found in [26] to be equal to 
roughly 15 mean free paths that were determined from the source parameters. This leads to the conclusion 
that the sonic surface location cannot be unambigously related to the number of free paths that characterizes 
the Knudsen layer thickness. The character of the dependences of the sonic surface location obtained for 
c~ = 0 and 1 in Fig. 4 is not indicative of the near asymptote (stabilization of the sonic surface location) with 
decreasing Kn. At small values of Kn, the sonic surface is shifted into the continuous flow zone, more exactly, 

254 



0 . 2 -  

|r/|r 

0.1 

0 

-~ [191 

10 "4 10 "3 10 "2 10 "1 10 0 Kn 

2, 

30 

20 

10 

- - O ~ - 1  
- - - -  0 

I 
1 

10 -4 10 "3 10 -2 10 "1 10 ~ Kn 

Fig. 3 Fig. 4 

into the zone remote from the near-wall relaxation. 
Indeed, the boundary of significant influence of nonequlibrium near the cylinder surface that 

corresponds to Kn/ = 0.01 is located, for Kn = 0.00005, at a distance of 4.4 free paths from the source 
surface, i.e., much closer than the sonic surface. This can be due only to the presence of heat flux and friction 
in front of the sonic surface. This follows from the law of transition from subsonic to supersonic flow that was 
formulated by L. A. Vulis in 1950 and is known as the law of reversion of action [37]: 

( M 2 - 1 ) d u  - dr C d q - O d L  d(rnu)  ~dA. (3.1) 
U T TTtU 

Here ~, r  and 0 are the coefficients, which are known from thermodynamics, of, respectively, the thermal dq, 
dissipative dL, and mechanical (in the sense of work done) dA actions. Within the zone between the Knudsen 
layer and the sonic surface for the one-dimensional flow under study we assume that dnu = 0 and dA = O. 
In this case, only terms expressing the geometric, thermal and dissipative actions remain on the right side of 
(3.1). 

The effects of thermoconductivity and viscosity can be evaluated from the change in the stagnation 
parameters in the zone between point 1, where Knl = 0.01, and point 2, where M = 1. For Kn = 0.00005, 
from the calculations we have all the necessary data to determine the stagnation parameters To and P0 at 
points 1 and 2 using the gasdynamics relations 

n = r ( l +  P0 = P(1 + 

assuming that the gas came to points 1 and 2 from stagnation conditions by isentropic expansion. For the 
selected gas space within dihedral angle A~o, the friction force due to viscosity effects is determined from the 
balance between the sums of forces governing the change in the momentum flux: 

r2 

plu~rlA~o -- p2u~r2Aqo + plrlA~O - p2r2A~o + A~o [ p d r  - Xfr = o. 

rl 

The effect of this force can be estimated by relating the friction force to a characteristic surface, for example, 
rlA~o at point 1: 

r2 

p2u2--  + Pl - p2Aqo--  + pdr.  (3.2) rl A~o = Pl u~ - 2 r2 
r l  r l  

rl  

The stagnation temperature increase AI_2T0 is a small value of about l0 -a, which does not allow one to study 
the character of the To variation between points 1 and 2; moreover, the difference between the temperatures 
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Tr and T in this region is of the same order. The stagnation pressure between points 1 and 2 changes definitely 
and noticeably: it fails off by a factor of 0.03. From (3.2) one can obtain Xfr/(rl,b,~) = 0.02, which corresponds 
to the level of full pressure losses. 

The analysis performed for nonisentropic flow upstream the sonic surface is of course correct only 
within the framework of continuous medium theory for Knt < 0.01. 

Since a sonic surface can generally exist either rarefied or within continuous flow, it would be interesting 
to describe the nonequlibrium state of this surface by the function (T - Tr ) /T  = F(Kn) (see Fig. 5). This 
dependence has limiting asymptotes. Specifying the value 6 = 1 - T r / T  = 10 -2, one can contend that at 
Kn = 0.0005 the sonic surface is located in the continuous flow zone. The shape of the curve in Fig. 5 suggests 
that approximate coincidence of the boundary of the nonequlibrium zone with the sonic surface takes place 
at Kn = 0.005. 

The spatial separation of the sonic surface and the Knudsen layer does not clarify the characteristics 
of the latter. In flow calculations using the Monte Carlo method no problem of the Knudsen layer exists 
and its thickness can be determined from the results of statistical modeling with an approximation such that 
statistical fluctuations can be differentiated from nonequilibrum. 

For a more complete description of the formation process of the sonic surface, Fig. 6 shows the density, 
velocity, and temperature curves in the zone between the cylinder surface and the sonic surface for Kn = 
0.00005, i.e., for bulk continuous flow. If continuous flow forms near the cylinder as a result of injection or 
evaporation into vacuum, the parameters under conditions of radial vapor/gas flow change successively: 1) at 
near-surface discontinuities, 2) in the kinetic zone at Knl > 0.01, in the subsonic flow zone at Knl < 0.01, and 
in the supersonic zone (zones I-III in Fig. 6). 

Such a character of flow from convex surfaces into vacuum is common for bodies of any shape. If the 
injected gas (vapor) expands into the background with some pressure that prevents transition through the 
sonic speed, all the above considerations are valid for the absence of the supersonic flow zone. 

4. Conc lus ions .  In this paper, an attempt is made to perform a systematic analysis of the 
nonequilibrium zone of gas expansion from a cylindical source with evaporation or injection into vacuum 
under conditions ranging from free-molecular to continuous flow using direct statistical modeling by the 
Monte Carlo method. 

Variations in the basic parameters during expansion are presented and the mechanism of formation of 
the sonic surface is established. It is shown that at small Knudsen numbers the sonic surface is located within 
the continuous flow zone. 

The results obtained make it possible to solve the problem of evaporation or injection from finite 
surfaces in new physical formulations taking into account the internal degrees of freedom of evaporating 
molecules and condensation in supersaturated flow, and also to analyze the flow of inhomogeneous gases. 
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